
CSPICE

劉彥廷
B97901121

陳韋翰
B97901108

January 13, 2011

Review of previous researches
Our project is based on the FORTRAN code provided by professor. The reference code provided
complete functions of time response and frequency response simulation. Our goal is to implement
the functions in C/C++.

Themethod in the reference code is to find out the transfer function of the circuit, then simulate
the circuit with the transfer function. The transfer function is generated by finding all the spanning
trees in the graph model. The detail operation can be found in [SPC].

Description of methods and algorithms
We devided the project into two parts: parser and simulator. There are less technical problems in
the parser part. We used Yacc and Lex to do the parsing job (see reference [LY]). We would like
to discuss the details of simulator and the design of the data structure to store circuit information.

Circuit data structure
Since we are using node analysis in finding the transfer function, we must have a class Node
to handle the node information. And there is another class Connection defines the connections
between nodes, that is, the possible direction of currents. Combine nodes and connections, a graph
G = (V,E) is formed where V is the set of nodes and E is the set of connections.

We keep an array of Connections in the data structure Node indicating the connections that
starts from this node. Also, a node pointer is kept in the Connection data structure to show the
destination of the connection. Data structure Element is defined to represent the physical eletrical
elements like resistors, capacitors, inductors, voltage controlled current source ... etc. There is a
pointer in Connection pointing to Element to show what kind of element is on the path.

To make the work of simulation simple, we treated voltage sources and current sources differ-
ently than Elements. This is because superposition principle is used in simulating time response,
thus using a different data structure may help when enumerating voltage and current sources.

Simulation
To find the denumerator and nominator of the transfer function, a DFS search on the graph is
needed. The method is decribed in [SPC]. Complex arithmetics is contained in the C++ library,

1

which gives a lot of help on evaluating transfer function.
There is a problem occured when displaying transfer function: there are too many terms. We

have to cross out the same terms to solve this problem. A hash function called FNV-1a (see
reference [FNV]) is used to hash the string of term into integer, so that it's easier to find out which
term should be crossed out.

The simulation of frequency response is rather easy, just plotting the data of the transfer
function. To perform a simulation of time response, we need to do a reverse Laplace transform
(we know that transfer function is the Laplace transform of the circuit). Trapezoidal rule is used
in numerical integration since it's easy to implement and strike a balance between overestimate
and underestimate of the integration value.

Program list
There is only one program generated after the compilation of the source code, and the usage is:

cspice [NETLIST] [PLOT DATA]

Test data format

Netlist format
This is comment
Elements
V[ID] [NODE1] [NODE2] [VALUE] # Voltage source
I[ID] [NODE1] [NODE2] [VALUE] # Current source
R[ID] [NODE1] [NODE2] [VALUE] # Resistor
L[ID] [NODE1] [NODE2] [VALUE] # Inductor
C[ID] [NODE1] [NODE2] [VALUE] # Capacitor
G[ID] [NODE1] [NODE2] [NODE3] [NODE4] [VALUE]
VCCS: I = (VALUE) * (V1 - V2)

Simulations
FREQ [START] [END] [STEP] [SRC] [OUTPUT] # Frequency response
TIME [START] [END] [STEP] [OUTPUT] # Transient response

Sample Netlist
VIN 1 0 0 1
OUT 6 0
R1 1 2 0.5
R2 2 0 0.4
C1 2 6 0.001
C2 2 3 0.001
R3 3 6 88.0
R4 7 0 0.05
R5 7 6 100.0

2

-4

-3

-2

-1

 0

 1

 2

 3

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

V
o

lt
a
g

e
 (

V
)

Time (s)

Time response

Figure 1: Time response

GM1 3 7 4 0 100.0
CI 4 0 1.0
RI1 4 0 100.0
GM2 4 0 5 0 -100.0
RI2 5 0 0.1
RO 5 6 -0.1

FREQ 10.0 100.0 20 VIN freq.eps
TIME 0.0 0.05 0.002 time.eps

Results comparison
The simulation results are plotted with GNUPLOT software (see reference [GP]). Figure 1 is the
time response and figure 2 is the frequency response. Both figures are match to the result in the
reference program.

Conclusion
In these term project, we successfully transfered netlists into data stuctures, and used it to find out
transfer function of the circuit and completed the simulation in both time response and frequency
response. Several tools are used in this project, such as Yacc, Lex, Gnuplot, FNV-1a ... etc. Yet
benchmarks of the performance is not complete because it is not easy to generate a meaningful
large circuit. This is the direction we will continue to work on.

3

Frequency response

-5

 0

 5

 10

 15

 20

 25

 30

 10 100

G
a
in

 (
d
B

)

Frequency (Hz)

Magnitude

-150

-100

-50

 0

 50

 100

 150

 10 100

A
rg

u
m

e
n
t

(D
e
g

re
e
)

Frequency (Hz)

Phase

Figure 2: Frequency response

References
• [SPC] Shu-Park Chan, Graph Theory and Some of its Applications in Electrical Network
Theory, SIAM-AMS proceedings Volume III, p45-64

• [LY] A Complete Guide to Lex & Yacc, http://epaperpress.com/lexandyacc/

• [GP] GNUPLOT 4.2 - A Brief Manual and Tutorial, http://www.duke.edu/∼hpgavin/gnu-
plot.html

• [FNV] FNV hash, http://isthe.com/chongo/tech/comp/fnv/

4

http://epaperpress.com/lexandyacc/
http://www.duke.edu/~hpgavin/gnuplot.html
http://www.duke.edu/~hpgavin/gnuplot.html
http://isthe.com/chongo/tech/comp/fnv/

